Understanding protein motions by computational modeling and statistical approaches
نویسندگان
چکیده
Because of its appealing simplicity, the elastic network model (ENM) has been widely accepted and applied to study many molecular motion problems, such as the molecular mechanisms of chaperonin GroEL-GroES function, allosteric changes in hemoglobin, ribosome motions, motor-protein motions, and conformational changes in general. In this dissertation, the ENM is employed to study various protein dynamics problems, and its validity is also examined by comparing with experimental data. First, we apply principal component analysis (PCA) to identify the essential protein motions from multiple structures (X-ray, NMR and MD) of the HIV-1 protease. We find significant similarities between the first few of these key motions and the first few low-frequency normal modes from the ENM, suggesting that the ENM provides a coarse-grained and structurally-based explanation for the experimentally observed conformational changes. Second, we extend these approaches from a single protein (HIV-1 protease) to thousands of proteins whose multiple NMR structures are available. We also find close correspondence between the experimentally observed dynamics and the ENM predicted ones, indicating the validity of using the ENM to computationally predict protein dynamics. Third, we develop a regression model for the isotropic B-factor predictions by combining the protein rigid body motions with the ENM. The new model shows significant improvements in B-factor predictions. Fourth, we further examine the validity of using the ENM to study protein motions. We use the anisotropic form of ENM to predict the anisotropic temperature factors of proteins. It presents a timely and important evaluation of the model, shows the extent of its accuracy in reproducing experimental anisotropic temperature factors, and suggests ways to improve the model. Finally, we apply the ENM to study a dataset of 170 protein pairs having “open” and “closed” structures, and try to address how well a conformational change can be predicted by the ENM and how to improve the model. The results indicate that the applicability of ENM for explaining conformational changes is not limited by either the size of the studied protein
منابع مشابه
Task-Level Reconstruction and Analysis of Dynamic Motions in Human Musculoskeletal Systems
Understanding human motor control involves studying the principles used to optimize dynamic movement. This process requires accurate modeling and simulation of musculoskeletal kinematics, reconstruction of motion dynamics, and characterization of elite performance motor skills. Motivated by the previous robotics research applied to these challenges, the present research aims to leverage the tas...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملUnderstanding Protein Flexibility through Dimensionality Reduction
This work shows how to decrease the complexity of modeling flexibility in proteins by reducing the number of dimensions necessary to model important macromolecular motions such as the induced-fit process. Induced fit occurs during the binding of a protein to other proteins, nucleic acids, or small molecules (ligands) and is a critical part of protein function. It is now widely accepted that con...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملCombined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015